报告题目:Hidden permutation symmetry of squared amplitudes in N=4/ABJM theory
报告人:施灿欣博士(理论物理研究所)
报告时间:9月5日9:00
报告地点:理8栋学术报告厅118
摘要:
Squared amplitude is a fascinating object in planar N=4 SYM and ABJM theory. In N=4, thanks to the well-known duality to Wilson loop and half-BPS correlator, the n-point m-loop square amplitude can be obtained from the (n+m)-point permutation-invariant "f-graphs". Exploiting the "cusp limit" of the correlator, we introduced a novel, powerful graphical rule, termed "double-triangle rule", which allowed us to bootstrap the coefficients of f-graphs up to 16 points. In ABJM, whether similar duality exists is unclear. However, by properly defining squared amplitude, we discovered that the n-point m-loop integrands were analogously unified in a (n+m)-point permutation-invariant generating function. Specially, in ABJM, it can be represented in either planar of bi-partite f-graphs. This non-trivial property, together with some conjectured graphical rules, allows us to bootstrap the generating function to 10 points. Our finding strongly suggests the existence of a correlator dual to squared amplitude in ABJM.
报告人简介:
施灿欣博士现任中国科学院理论物理研究所的博士后。他于2016年在中国科学技术大学本科毕业后赴欧洲留学,于2018年获得综合理工学院和苏黎世联邦理工学院联合培养的硕士学位,2022年获柏林洪堡大学的博士学位。他主要从事高能物理理论的研究工作,尤其关注散射振幅、特别是与引力波物理结合的研究方向。具体研究课题包括量子场论在双黑洞动力学的应用、散射振幅的劈裂等新结构、以及N=4和ABJM理论振幅的隐藏对称性等。在这些研究方向,目前他已在PRL、JHEP等期刊发表15篇论文。